Operations: Cybersecurity – What To Know
BCWWA SCADA & IT Conference
2019-11-20
INDUSTRIAL CYBERSECURITY

Priorities:

» Safe physical operations

» Reliable operations
 • Continuous
 • Correct
 • Efficient
 • No equipment damage

At many sites, security programs are part of safety programs
HUMAN MACHINE INTERFACE (HMI)
ISA SP99 (PURDUE) MODEL

Level 4
Enterprise Systems
(Business Planning & Logistics)

Level 3
Operations Management

Level 2
Supervisory Control

Level 1
Safety and Protection

Level 0
Process
(Equipment Under Control)

Industrial Automation and Control Systems
DATA VS MONITORING VS CONTROL

- IT history: leger books / accounting data / transactions
- Industrial network history
 - Gauges = monitoring = IT data
 - Switches & dials = control = safety/reliability critical
- IT experts say “it’s all data,” but this blinds us to crucial difference between monitoring and control
- Correct control is vital to physical safety and physical reliability

Control is not AIC, CIA or “IT data” – control is really important
FIRST THREE LAWS OF SCADA SECURITY

» Nothing is secure
» All software can be hacked
» All cyber attacks are information, and every bit of information can be an attack

In the worst case a compromised CPU will issue every unsafe instruction to the physical process that the CPU is physically able to issue
ATTACKERS PREFER PERMISSIONS

- Remote access attacks piggy-back on legitimate sessions / permissions, such as remote access sessions
- Phishing attacks steal credentials
- Pass-the-hash attacks re-use existing credentials
- Databases & other servers permit remote execution
- Remote Access Trojans (RATs) provide remote control to understand target, steal credentials & make next move

Why write code to exploit vulnerabilities when attackers can log in and execute what they want?
WHO’S COMING AFTER US

<table>
<thead>
<tr>
<th>Threat</th>
<th>Resources</th>
<th>Attacks</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation-State Military</td>
<td>Nearly unlimited</td>
<td>Autonomous Targeted Malware</td>
<td>Stuxnet, Shamoon(?)</td>
</tr>
<tr>
<td>Intelligence Agencies</td>
<td>Professional</td>
<td>Remote Control – Exploit Vulns</td>
<td>Black Energy, TRITON</td>
</tr>
<tr>
<td>Hacktivists</td>
<td>Skilled Amateur</td>
<td>Remote Control – Exploit Permissions</td>
<td>Ukraine(?), Anonymous</td>
</tr>
<tr>
<td>SCADA Insiders</td>
<td>Amateur</td>
<td>Exploit Permissions</td>
<td>Maroochy</td>
</tr>
<tr>
<td>Organized Crime</td>
<td>Professional</td>
<td>Indiscriminate Malware, Exploit Known Vulns</td>
<td>Zeus, Ransomware</td>
</tr>
<tr>
<td>Corporate Insiders</td>
<td>Amateur</td>
<td>Exploit Permissions</td>
<td>Fake Vendor Fraud</td>
</tr>
</tbody>
</table>
FAILED DEFENSE IN DEPTH

- Start with HFLI attacks – firewalls, AV, patch programs
- Insiders: background checks, detailed auditing - deterrence
- IDS cost: false alarms
- IDS takes average 2-3 months while attacker has remote control
- Data exfiltration prevention does not detect sabotage

Can’t restore equipment & human lives “from backups”

<table>
<thead>
<tr>
<th>Threat</th>
<th>Defense</th>
<th>Cost</th>
<th>Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation-State Military</td>
<td>Escalate to national agencies</td>
<td>n/a</td>
<td>Not</td>
</tr>
<tr>
<td>Intelligence Agencies</td>
<td>IDS / Exfiltration prevention</td>
<td>$$$</td>
<td>Poor</td>
</tr>
<tr>
<td>Hacktivists</td>
<td>Intrusion detection systems</td>
<td>$$$</td>
<td>Fair</td>
</tr>
<tr>
<td>ICS Insiders</td>
<td>Physical security, detailed auditing</td>
<td>$$</td>
<td>Good</td>
</tr>
<tr>
<td>Organized Crime</td>
<td>Encryption, AV, security updates</td>
<td>$$$</td>
<td>Good</td>
</tr>
<tr>
<td>Corporate Insiders</td>
<td>Firewalls, role-based permissions</td>
<td>$</td>
<td>Good</td>
</tr>
</tbody>
</table>
INTERNET / FIREWALLS

» Internet = hosts + routers + connections between them – all talking using the Internet Protocol (IP)

» Hosts – sources & destinations of IP messages

» Routers – figure out which connection to send each message down, to get message to its destination

» Firewalls – routers with filters
 • Filter (software) looks at each message
 • Decides if it is allowed
 • If so, hands to router to send

For details – see my ISA InTech paper “13 Ways To Break A Firewall”
SECURE OPERATIONS TECHNOLOGY

IT-SEC:
protect the information

SEC-OT:
protect physical operations
from the information
OFFLINE CONTROLS

Offline Survey
Test Beds
Removable Media
Removable Devices
New Cyber Assets
Insider Attacks
Deceived Insiders
Nonessential Equipment
REMOVABLE MEDIA

» Media = information storage without an embedded CPU – CDs, DVDs, floppies

» Software policies preventing media from mounting

» Multi-AV-scanning kiosks at physical perimeters

» Physically blocking or removing devices on all equipment except kiosks

» Publish scanned files to test bed or control-critical network

Removable media is the most frequent source of common malware on industrial networks
REMOVABLE DEVICES

» Vendor laptop program
» Network Access Control
» Alerts
» Contracts forbidding devices
» Labelling control-critical devices
» USB charger program – reduces temptation

SEC-OT sites report that these programs essentially eliminate the use of IT-exposed removable devices
DECEIVED INSIDERS

» Well-meaning insiders can be deceived into acting on false information with physical consequences

» Insiders must be trained to be suspicious of and seek verification of externally-sourced information and information that has traversed a non-critical network

Emailed information and instructions should be verified verbally before taking action
Unidirectional Security Gateways are a combination of **hardware and software**

- The hardware is physically able to send information in only one direction
- The software replicates servers & emulates devices from the OT network to the IT network
- IT replicas are normal participants in IT networks
- All cyber attacks are information – no attack, no matter how sophisticated, can propagate back to the industrial network through the gateway
Waterfall enables secure operations, preventing remote cyber attacks on industrial, OT and mission-critical environments.

Customers worldwide use Waterfall's array of OT security products to integrate OT networks with external environments.

We provide the strongest security solutions that fit the need: access to operations data, OT security monitoring, and disciplined remote access and remote control.

Redefining OT security with Waterfall’s innovative Unidirectional Gateway technologies
Guests from across the industrial security space

Vendors: issues, technology & approaches

Government agencies: programs & resources

Owners & operators: priorities & approaches

Other: recruiters, educators & more

https://waterfall-security.com/podcasts
SECURE OPERATIONS TECHNOLOGY

- **Thorough** – address all attack vectors – offline and online
- **Robust** – physical & hardware protections, not just software
- **Disciplined** – not waiting on “edge of seat” for actionable intel
- **Futureproof** – cyber attacks will always be information